ArcCos ArcCos[z] gives the arc cosine of the complex number z. ArcCosh ArcCosh[z] gives the inverse hyperbolic cosine of the complex number z. ArcCot ArcCot[z] gives the arc cotangent of the complex number z. ArcCoth ArcCoth[z] gives the inverse hyperbolic cotangent of the complex number z. ArcCsc ArcCsc[z] gives the arc cosecant of the complex number z. ArcCsch ArcCsch[z] gives the inverse hyperbolic cosecant of the complex number z. ArcSec ArcSec[z] gives the arc secant of the complex number z. ArcSech ArcSech[z] gives the inverse hyperbolic secant of the complex number z. ArcSin ArcSin[z] gives the arc sine of the complex number z. ArcSinh ArcSinh[z] gives the inverse hyperbolic sine of the complex number z. ArcTan ArcTan[z] gives the arc tangent of the complex number z. ArcTan[x, y] gives the arc tangent of y/x, taking into account which quadrant the point (x, y) is in. ArcTanh ArcTanh[z] gives the hyperbolic arc tangent of the complex number z. BesselI BesselI[n, z] gives the modified Bessel function of the first kind I(n, z). BesselJ BesselJ[n, z] gives the Bessel function of the first kind J(n, z). BesselK BesselK[n, z] gives the modified Bessel function of the second kind K(n, z). BesselY BesselY[n, z] gives the Bessel function of the second kind Y(n, z). Beta Beta[a, b] gives the Euler beta function B(a, b). Beta[z, a, b] gives the incomplete beta function B(z, a, b). Beta[z0, z1, a, b] gives the generalized incomplete beta function Beta[z1, a, b] - Beta[z0, a, b]. BetaRegularized BetaRegularized[z, a, b] gives the regularized incomplete beta function I(z, a, b). ChebyshevT ChebyshevT[n, x] gives the nth Chebyshev polynomial of the first kind. ChebyshevU ChebyshevU[n, x] gives the nth Chebyshev polynomial of the second kind. Cos Cos[z] gives the cosine of z. Cosh Cosh[z] gives the hyperbolic cosine of z. CoshIntegral CoshIntegral[z] gives the hyperbolic cosine integral Chi(z). CosIntegral CosIntegral[z] gives the cosine integral function Ci(z). Cot Cot[z] gives the cotangent of z. Coth Coth[z] gives the hyperbolic cotangent of z. Csc Csc[z] gives the cosecant of z. Csch Csch[z] gives the hyperbolic cosecant of z. Divide x/y or Divide[x, y] is equivalent to x y^-1. Erf Erf[z] gives the error function erf(z). Erf[z0, z1] gives the generalized error function erf(z1) - erf(z0). Erfc Erfc[z] gives the complementary error function erfc(z). Erfi Erfi[z] gives the imaginary error function erf(iz) / i. Exp Exp[z] is the exponential function. ExpIntegralE ExpIntegralE[n, z] gives the exponential integral function E(n, z). ExpIntegralEi ExpIntegralEi[z] gives the exponential integral function Ei(z). Factorial n! gives the factorial of n. Factorial2 n!! gives the double factorial of n. Gamma Gamma[z] is the Euler gamma function. Gamma[a, z] is the incomplete gamma function. Gamma[a, z0, z1] is the generalized incomplete gamma function Gamma[a, z0] - Gamma[a, z1]. GammaRegularized GammaRegularized[a, z] is the regularized incomplete gamma function Q(a, z). HermiteH HermiteH[n, x] gives the n-th Hermite polynomial in x. Hypergeometric0F1 Hypergeometric0F1[a, z] is the hypergeometric function 0F1(; a; z). Hypergeometric0F1Regularized Hypergeometric0F1Regularized[a, z] is the regularized confluent hypergeometric function Hypergeometric0F1[a, z]/Gamma[a]. Hypergeometric1F1 Hypergeometric1F1[a, b, z] is the Kummer confluent hypergeometric function 1F1(a; b; z). Hypergeometric1F1Regularized Hypergeometric1F1Regularized[a, b, z] is the regularized confluent hypergeometric function Hypergeometric1F1[a, b, z]/Gamma[b]. Hypergeometric2F1 Hypergeometric2F1[a, b, c, z] is the hypergeometric function 2F1(a, b; c; z). Hypergeometric2F1Regularized Hypergeometric2F1Regularized[a, b, c, z] is the regularized hypergeometric function Hypergeometric2F1[a, b, c, z]/Gamma[c]. HypergeometricPFQ HypergeometricPFQ[{a1, ... , ap}, {b1, ... , bq}, z] is the generalized hypergeometric function pFq(a; b; z). HypergeometricPFQRegularized HypergeometricPFQRegularized[{a1, ... , ap}, {b1, ... , bq}, z] is the regularized generalized hypergeometric function HypergeometricPFQ[{a1, ... , ap}, {b1, ... , bq}, z]/(Gamma[b1] ... Gamma[bq]). HypergeometricU HypergeometricU[a, b, z] is the confluent hypergeometric function U(a, b, z). InverseErf InverseErf[s] gives the inverse error function obtained as the solution for z in s = erf(z). InverseErfc InverseErfc[s] gives the inverse complementary error function obtained as the solution for z in s = erfc(z). LaguerreL LaguerreL[n, a, x] gives the n-th generalized Laguerre polynomial in x for parameter a. LegendreP LegendreP[n, x] gives the n-th Legendre polynomial in x. LegendreP[n, m, x] gives the associated Legendre polynomial. LegendreQ LegendreQ[n, z] gives the n-th Legendre function of the second kind. LegendreQ[n, m, z] gives the associated Legendre function of the second kind. Log Log[z] gives the natural logarithm of z (logarithm to base e). Log[b, z] gives the logarithm to base b. LogGamma LogGamma[z] gives the logarithm of the gamma function. LogIntegral LogIntegral[z] is the logarithmic integral function li(z). Minus -x is the arithmetic negation of x. Plus x + y + z represents a sum of terms. Power x^y gives x to the power y. Sec Sec[z] gives the secant of z. Sech Sech[z] gives the hyperbolic secant of z. Sin Sin[z] gives the sine of z. Sinh Sinh[z] gives the hyperbolic sine of z. Sqrt Sqrt[z] gives the square root of z. Tan Tan[z] gives the tangent of z. Tanh Tanh[z] gives the hyperbolic tangent of z. Times x*y*z or x y z represents a product of terms.